Science

Newly Detected Seaborgium-257 Offers Critical Data on Fission and Quantum Shell Effects

Newly Detected Seaborgium-257 Offers Critical Data on Fission and Quantum Shell Effects

German Scientists at GSI Helmholtzzentrum für Schwerionenforschung found a new superheavy isotope, 257Sg, named Seaborgium, which reveals unexpected details about the stability and nuclear fission. This study was published in Physical Review Letters and describes how this isotope, made by fusing chromium-52 with lead-206, survived for 12.6 milliseconds, longer than usual. The rare longevity and decay into 253Rf provide new indications of how K-quantum numbers or angular momentum impact the fission resistance. The findings fill in the gaps and give us an understanding of the effects of quantum shells in superheavy nuclei, which is crucial for preventing immediate disintegration.

Challenging Traditional Views on K-Quantum Numbers and Fission

As per the study by GSI, it challenges conservative views on how K-quantum numbers impact fission. Previously, it was found that the higher K values lead to greater fission hindrance, but after getting the findings from the GSI team, a more complex dynamic emerged. They found that K-quantum numbers offer hindrance to fission, but it is still ot known that it is how much, said Dr. Pavol Mosat, the study’s co-author.

Discovery of First K-Isomeric State in Seaborgium

An important milestone is the identification of the first K-isomeric state in seaborgium. In 259Sg, the scientists found that the conversion of the electron signal occurs 40 microseconds after the nuclear formation. This is clear evidence of the high angular momentum K-isomer. These states have longer lifetimes and friction in fission in a more effective way than their ground-state counterparts.

Implications for the Theorised Island of Stability

This discovery by the scientists provides key implications for the Island of stability, which has long been theorised. It is a region where superheavy elements could have comparatively long half-lives. If K-isomers are present in the still undiscovered elements such as 120, they can enable scientists in the detection of nuclei that would otherwise decay in just under one microsecond.

Synthesising 256Sg with Ultra-Fast Detection Systems

This team of German Scientists under GSI is now aiming to synthesise 256Sg, which might decay quicker than observed or predicted. Their success is dependent on the ultra-fast detection systems created by GSI, which are capable of capturing events within 100 nanoseconds. This continued research by the team may help in reshaping the search and studying the heaviest elements in the periodic table.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


OpenAI Says It Has No Plan to Use Google’s In-House Chip



Apple Loses Bid to Dismiss US Smartphone Monopoly Case