High above the Mojave Desert, NASA’s two F-15 jets completed a pivotal series of May flights to validate airborne tools essential for the agency’s Quesst mission, aimed at enabling quiet supersonic travel. Flying faster than the speed of sound, the jets replicated the conditions under which NASA’s experimental X-59 aircraft will fly. The campaign tested shockwave sensors, geospatial guidance systems, and schlieren imaging tools designed to detect and visualise the aircraft’s sonic “thump”—a softer alternative to the traditional boom—when the X-59 cruises at Mach 1.4 and above 50,000 feet.
As per NASA’s Armstrong Flight Research Centre, the dual-jet validation effort was led by the SCHAMROQ team, which transformed an F-15D from a combat aircraft into a research platform. Along with an F-15B, the aircraft were used to perform simultaneous flight operations—called dual ship flights—to validate three core systems: a near-field shock-sensing probe, an airborne schlieren photography setup, and a GPS-driven Airborne Location Integrating Geospatial Navigation System (ALIGNS). These efforts collectively confirm the systems’ readiness for X-59 data capture.
Cheng Moua, NASA’s project lead for SCHAMROQ, likened the series to a “graduation exercise”, where all tools were tested in their final configuration. The schlieren system, in particular, demanded intense precision, requiring a high-speed handheld camera to track the X-59’s airflow against the sun’s backdrop while the aircraft flew through a tight 100-foot alignment corridor.
The successful validation shows that NASA’s specialised tools are ready to record the X-59’s sound signature. This is a key step towards establishing that it is conceivable, quantifiable, and repeatable to fly supersonic over land without making too much noise. The information will help determine the future of commercial aviation regulation and technology, making the promise of quicker, quieter flight travel more likely.